Profile:
学术简介
杨丹丹,2014年获得英国约克大学数学博士学位。现为西安电子科技大学教授、博导、国家高层次青年人才、陕西省杰青、校华山学者特聘教授。主要研究方向为半群理论、组合群论。目前主持国家自然科学基金面上项目和陕西省杰出青年科学基金项目各一项;获陕西省青年科技奖,入选陕西省高校青年杰出人才支持计划。研究成果发表在Adv. Math., Quart. J. Math., J. Algebra等期刊。应邀在全国群论会议等作大会报告。
主要学术论文
1. Coherency for monoids and purity for their acts (with V. Gould),Advances in Mathematics,2023,429,109182, 1-47.
2. A group-theoretical interpretation of the word problem for free idempotent generated semigroups (with I. Dolinka and V. Gould),Advances in Mathematics, 2019, 345, 998-1041.
3. Coherency and constructions for monoids (with V. Gould, M. Hartmann, N. Ruskuc and R. Zenab),Quarterly Journal of Mathematics(Oxford), 2020, 71, 1461-1488.
4. On graph products of monoids (with V. Gould),Journal of Algebra, 2023, 620. 113-156.
5. Free idempotent generated semigroups and endomorphism monoids of free G-acts (with I. Dolinka and V. Gould),Journal of Algebra, 2015, 429, 133-176.
6. Free idempotent generated semigroups over bands and biordered sets with trivial products (with V. Gould),International Journal of Algebra and Computation, 2016, 26, 473-507.
7. Centralizers in graph products of semigroups (with H. Y. Li),Semigroup Forum, 2023, 106, 285-326.
8. Free idempotent generated semigroups and endomorphism monoids of independence algebras (with V. Gould),Semigroup Forum,2016, 93, 535-553.
9. Every group is a maximal subgroup of a naturally occurring free idempotent generated semigroup (with V. Gould),Semigroup Forum, 2014, 89, 125-134.
10. Free idempotent generated semigroups: subsemigroups, retracts and maximal subgroups (with V. Gould and T. Quinn-Gregson),Communications in Algebra, 2018, 46, 2264-2277.
11. Rees matrix covers for a class of locally U-commutative semigroups (with S. Liu),Communications in Algebra, 2017, 45, 1189-1202.
12. Semigroups with finitely generated universal left congruence (with V. Gould, T. Quinn-Gregson and R. Zenab),Monatshefte fur Mathematik, 2019, 190, 689-724.
招生信息
本人招收有志于数学研究的博士后、博士生、硕士生。欢迎同学们保送或报考,请提前邮件联系:ddyang@xidian.edu.cn
招生专业:基础数学
招生方向:半群理论、组合群论
招生指标:硕士生3-4名,博士生1-2名,博士后研究人员1名