近日,西电材料学院先进材料与纳米器件研究所和兰州大学合作的研究成果以“Highly Sensitive Strain Sensors Based on Piezotronic Tunneling Junction”为题发表在国际知名期刊Nature Communications上。博士生于秋红为本文第一作者,西电材料学院为第一单位,通讯作者为兰州大学秦勇教授、刘书海副教授和中国科学院北京纳米能源与系统研究所王龙飞博士。
课题基于金属-绝缘体-压电半导体(Ag/HfO2/n-ZnO)接触结构设计了一种高性能的压电电子学隧道结应变传感器(PTSS)。压电调控特性对界面载流子隧穿输运的影响是在超低应变(<0.01%)和较高应变(0.01~0.10%)两个阶段,分别对应于压电主导调控势垒宽度和势垒高度。当给器件施加0.00%-0.10%的应变时,PTSS的输出电信号增加了两个数量级,是Ag/n-ZnO肖特基结应变传感器(SSS)的300.5倍。压电电子学隧道结在传感器领域具有较好的潜力:在0.10%的拉伸应变下,PTSS表现出了具有高电流开关比(478.4)和高应变灵敏度因数(GF)(4.8×10^5)。此工作在器件尺度上实现了高性能的压电电子学隧道结器件,深入地分析了压电电子学效应对隧道效应调控的基本特性,拓展了量子隧穿效应在力学传感中的实际应用。
(a)压电极化调控压电电子学隧道结的界面能带示意图。(b)压电电子学隧道结应变传感器的光学图像。(c,d)HfO2/n-ZnO纳米线的SEM图像。(e)沿(d)中的标记位置测试的HfO2/n-ZnO纳米线表面的高分辨TEM图像。(f)绝缘层HfO2的厚度统计图。(g)Ag/HfO2/n-ZnO PTSS和Ag/n-ZnO SSS的I-V曲线。(h)计算得出Ag/n-ZnO SSS的势垒高度约为0.42 eV。(i-k)Ag/HfO2/n-ZnO的I-V、ln(I∙V-2)与-1/V以及ln(I∙V-1)与V1/2关系曲线。
课题组成员制备了一种基于压电电子学隧道结(Ag/HfO2/n-ZnO)的宏观器件级应变传感器件,并分别研究了在小应变(<0.01%)和较大应变(0.01~0.10%)下压电电子学效应对载流子隧穿输运的调控机理。由于压电极化电荷对隧道结势垒高度和宽度的并行调控作用,压电电子学隧道结应变传感器在拉伸应变为0.10%时表现出较高的灵敏度,其中,器件开关电流比为478.4,应变灵敏度因数GF值高达4.8×10^5。与传统的基于肖特基接触的应变传感器和现有的基于ZnO纳米线或纳米带的传感器相比,压电电子学隧道结应变传感器具有更大的优势。这项工作实现了压电电子学效应和隧穿效应的深入结合,有利于促进高性能压电电子学器件和应变传感器的发展。
据悉,近年来,为了提高压电传感器的性能,一方面,对压电器件的结构进行了扩展,研究了具有不同半导体结构的压电器件的物理模型,比如金属-半导体肖特基结、p-n结、双晶界面、二维电子气体等。另一方面,提出了一些提高器件性能的有效策略。通用的方法是:寻找具有高压电系数或特殊几何特性的压电半导体材料提高压电极化电荷的产生效率;采用引入合金结构和内部空穴等策略减弱自由载流子对压电极化电荷的静电屏蔽效应;优化器件结构(如双通道结构和离子凝胶调控结构),提高器件使用压电极化电荷的有效性和效率。这些研究主要集中在对界面势垒高度的压电调制和改善压电效应对机械传感的影响。然而,为了进一步提高压电器件的性能,不仅需要对器件进行材料改性和结构优化,还需要对压电调控机制进行创新。
原文链接:https://doi.org/10.1038/s41467-022-28443-0